If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15x^2+42x-24=0
a = -15; b = 42; c = -24;
Δ = b2-4ac
Δ = 422-4·(-15)·(-24)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-18}{2*-15}=\frac{-60}{-30} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+18}{2*-15}=\frac{-24}{-30} =4/5 $
| 3(x−9)(x−2)−(x−7)(x−9)=0 | | a*3+6=1 | | x+22=4+3x | | 4x+3=24+x | | 3z/7+2=3 | | (x+1)(x+1)-(5-4x)(5-4x)=0 | | a/6+8=9 | | (x+1)^2-(5-4x)^2=0 | | 5-3x=10-6x | | 0.1h+2=h+0.2 | | 3(x+30)=15 | | 14=-1(t)2+9(t) | | 14=-1(t)^2+9(t) | | -4b+7=-10b+37 | | 6+17b=-15+14b | | 6(3s+6)=270 | | 4(2l+5)=84 | | (u-10)9=81 | | (q-5)6=24 | | w^2+2w+9=0 | | 10+2x=90+x | | 9t-9=56-t | | 2x*2x+2x+10=0 | | X+(20x30)=430 | | X+20x30=430 | | (A+1)(a-2)=a=3 | | -d+18d=17d | | 45+3x=14 | | X^2-13y^2=1 | | 9^x=0.7 | | 0,8=4/x | | 2(x+1)+4=6(3x-6) |